skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tollis, Marc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yeager, Meredith (Ed.)
    Abstract Cancer is a disease of multicellularity, observed across the tree of life. In principle, animals with larger body sizes and longer lifespans should be at increased risk of developing cancer. However, there is no strong relationship between these traits and cancer across mammals. Previous studies have proposed that increased copy number of cancer-related genes may enhance the robustness of cancer suppression pathways in long-lived mammals, but these studies have not extended beyond known cancer-related genes. In this study, we conducted a phylogenetic generalized least squares analysis to test for associations between copy number of all protein-coding genes and longevity, body size, and cancer prevalence across 94 species of mammals. In addition to investigating the copy number of individual genes, we tested sets of related genes for a relationship between the aggregated gene copy number of the set and these traits. We did not find strong evidence to support the hypothesis that adaptive changes in gene copy number contribute to the lack of correlation between cancer prevalence and body size or lifespan. However, we found several biological processes where aggregate copy number was associated with malignancy rate. The strongest association was for the gene set relating to transforming growth factor beta, a cytokine that plays a role in cancer progression. Overall, this study provides a comprehensive evaluation of the role of gene copy number in adaptation to body size and lifespan and sheds light on the contribution of gene copy number to variation in cancer prevalence across mammals. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Mueller, Rachel (Ed.)
    Abstract Transposable elements (TEs) are repetitive DNA sequences which create mutations and generate genetic diversity across the tree of life. In amniote vertebrates, TEs have been mainly studied in mammals and birds, whose genomes generally display low TE diversity. Squamates (Order Squamata; including ∼11,000 extant species of lizards and snakes) show as much variation in TE abundance and activity as they do in species and phenotypes. Despite this high TE activity, squamate genomes are remarkably uniform in size. We hypothesize that novel, lineage-specific genome dynamics have evolved over the course of squamate evolution. To understand the interplay between TEs and host genomes, we analyzed the evolutionary history of the chicken repeat 1 (CR1) retrotransposon, a TE family found in most tetrapod genomes which is the dominant TE in most reptiles. We compared 113 squamate genomes to the genomes of turtles, crocodilians, and birds and used ancestral state reconstruction to identify shifts in the rate of CR1 copy number evolution across reptiles. We analyzed the repeat landscapes of CR1 in squamate genomes and determined that shifts in the rate of CR1 copy number evolution are associated with lineage-specific variation in CR1 activity. We then used phylogenetic reconstruction of CR1 subfamilies across amniotes to reveal both recent and ancient CR1 subclades across the squamate tree of life. The patterns of CR1 evolution in squamates contrast other amniotes, suggesting key differences in how TEs interact with different host genomes and at different points across evolutionary history. 
    more » « less
  3. Alignments, tree files, and repeat annotations for "Differential Conservation and Loss of CR1 Retrotransposons in Squamates Reveals Lineage-Specific Genome Dynamics across Reptiles" 
    more » « less
  4. Abstract Rapid technological improvements are democratizing access to high quality, chromosome-scale genome assemblies. No longer the domain of only the most highly studied model organisms, now non-traditional and emerging model species can be genome-enabled using a combination of sequencing technologies and assembly software. Consequently, old ideas built on sparse sampling across the tree of life have recently been amended in the face of genomic data drawn from a growing number of high-quality reference genomes. Arguably the most valuable are those long-studied species for which much is already known about their biology; what many term emerging model species. Here, we report a highly complete chromosome-scale genome assembly for the brown anole,Anolis sagrei– a lizard species widely studied across a variety of disciplines and for which a high-quality reference genome was long overdue. This assembly exceeds the vast majority of existing reptile and snake genomes in contiguity (N50 = 253.6 Mb) and annotation completeness. Through the analysis of this genome and population resequence data, we examine the history of repetitive element accumulation, identify the X chromosome, and propose a hypothesis for the evolutionary history of fusions between autosomes and the X that led to the sex chromosomes ofA. sagrei. 
    more » « less
  5. Abstract BackgroundHigh-quality genomic resources facilitate investigations into behavioral ecology, morphological and physiological adaptations, and the evolution of genomic architecture. Lizards in the genus Sceloporus have a long history as important ecological, evolutionary, and physiological models, making them a valuable target for the development of genomic resources. FindingsWe present a high-quality chromosome-level reference genome assembly, SceUnd1.0 (using 10X Genomics Chromium, HiC, and Pacific Biosciences data), and tissue/developmental stage transcriptomes for the eastern fence lizard, Sceloporus undulatus. We performed synteny analysis with other snake and lizard assemblies to identify broad patterns of chromosome evolution including the fusion of micro- and macrochromosomes. We also used this new assembly to provide improved reference-based genome assemblies for 34 additional Sceloporus species. Finally, we used RNAseq and whole-genome resequencing data to compare 3 assemblies, each representing an increased level of cost and effort: Supernova Assembly with data from 10X Genomics Chromium, HiRise Assembly that added data from HiC, and PBJelly Assembly that added data from Pacific Biosciences sequencing. We found that the Supernova Assembly contained the full genome and was a suitable reference for RNAseq and single-nucleotide polymorphism calling, but the chromosome-level scaffolds provided by the addition of HiC data allowed synteny and whole-genome association mapping analyses. The subsequent addition of PacBio data doubled the contig N50 but provided negligible gains in scaffold length. ConclusionsThese new genomic resources provide valuable tools for advanced molecular analysis of an organism that has become a model in physiology and evolutionary ecology. 
    more » « less